It appears you have not yet Signed Up with our community. To Sign Up for free, please click here....



Pain Management Message Board
Post New Thread   Closed Thread
LinkBack Thread Tools
Old 10-20-2004, 12:13 PM   #1
Senior Veteran
(female)
 
Join Date: Jan 2003
Location: alberta
Posts: 1,148
twisten HB User
Shoreline, tolerance question

Hey Dave I've got a quick question. If a person where to go totally off opiates for pain control how long would it take before the tolerance levels went down or would they??
__________________
Crohn's disease, scoliosis, chronic myofascial pain, migraines, Osteoporosis, Trigeminal Neuralgia.

 
Sponsors Lightbulb
   
Old 10-20-2004, 01:49 PM   #2
Senior Veteran
(male)
 
Join Date: Jun 2003
Posts: 3,488
Shoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB User
Re: Shoreline, tolerance question

Hey Twist, That's a tough one. The old school of thought for medication holidays was that you can reset tolerance in 30-90 days, But after years of opiate use, If you went cold turkey, you wouldn't feel completely normal for 6 months to a year and even then unlesss the pain has been removed, I don't thiink it would acomplish a thing with medications to cause the changes needed to reset your nervous system , all the neuotransmitters, enzymes, peptides, receptors and the engrainning of the pain signal just like memory in your brain.

The idea of medication holidays was developed long before research in Neurochemistry even scrathed the surface of chronic pain. They are still finding different neuro transmitters and opiate receptors and other biochemical transmitters involved in the process.

The understanding of the differences between chronic pain and acute pain are decades ahead of the idea of medication holidays. The holiday you need is from the release of natural amino acids, peptides and nurotransmitters like substance P, BABA, NK1 and the regrowth of nerve cells and tother physiological damage to the nerous sstem caused by CP. It's not just pain any longer once it becomes chronic, It's a completely different process of interpretng pain and the reaction and release of harmful biochemicals.

Using NMDA blocking agents while on a vacation holiday may prove very beneficial in resetting tolerance to pain and tolerance to opiates. How long do I think it would take to reset your body? Months or years without intervention with NMDA blocking agents, Like Dextromathorphan, Namanda,or Ketamine. This may be why Ketamine infusions are on the rise in an attempt to reverse some of the damage done by chronic pain.


I hate to compare addiction to physical dependence, But there is an addiction saying that says you start back up where you left off. Meaning extremely high doses to obtain the desirable high would need to be met within days or weeks of relapse.

Comparisons can be made betwen the neurochemical response changes of an addict and a chroinic pain patiet when you over ride or burn out the natural pain relieving endorphins and enkephlins and the NMDA receptor. The changes occur regardless of why you continue to use opiates. However when the pain source isn't removed and the pain signal is engrained into nerve tissue, Simply stopping doesn't have an imediate impact that will allow you to start meds again at half your previus dose and stay there for any length of time. You still have the same problems both physically and neurochemiclly

When you have cell changes, cell death, the release of abnormal neurotransmitters and enzymes with chronic pain, It does make resetting your entire chemstry of the nervous sytem a much longer haul than simply getting through detox and withdrawal and then waiting 2 months.

You have probably read this and although it's not easy reading, after reading it several times and then trying to think of a way to explain the entire process it does give you a much greater understanding of why a simple holiday would not be effective withut biochemical intervention to close calcium channels, reduce the inflamatory agent substance P, stop the production of NK 1 and removed encoded momory into nerve tissue much the same way memory is encoded chemically in your brain.

Read this a couple times and if you have some quations I'm pretty sure i can answer them for you. It explains the process and change from acute pajin to chronic pain. It also has some interesting info about substance P levels in fibromyalgia. Everyone with this condition has tested high for substance P in therir spianal flud which causes neuro inflamation. So although the can't see Fibro on an MRI, the can detect the biproducts of living with chronic pain.

It's similar to finding nitrates in urine when someone has a urinary tract infection. Chemical changes occur during cell destruction and dcell death and the formation or over formation fof naturally occuring neurtransmitteres, peptides and enzymes.


When you read this over and over it starts to make sense and tie things together,
It's brookoffs article on hospiatl practices and chronic pain. You can find both parts by simply serching for Danial brookoff or by cutting and pasting these links
[url]http://www.hosppract.com/issues/2000/07/brook.htm[/url]
[url]http://www.hosppract.com/issues/2000/09/brook.htm[/url]

Take care, David

Last edited by Shoreline; 10-20-2004 at 02:08 PM.

 
Sponsors Lightbulb
   
Old 10-20-2004, 01:52 PM   #3
Senior Veteran
(male)
 
Join Date: Jun 2003
Posts: 3,488
Shoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB User
Re: Shoreline, tolerance question

Normal Pain Pathways
Pain serves as an important alarm that warns us of threatened or ongoing tissue damage. The ability to sense pain keeps us alive and functioning. When that ability is compromised--for example, by diabetes or other causes of sensory neuropathy--the risk of severe tissue damage and debility is greatly increased.

Tissue injuries trigger the release of chemicals that give rise to an inflammatory reaction that in turn triggers pain signals to the brain. These signals, in the form of electrical impulses, are carried by thin unmyelinated nerves called nociceptors (C-fibers) that synapse with neurons in the dorsal horn of the spinal cord. From the dorsal horn, the pain signal is transmitted via the spinothalamic tract to the cerebral cortex, where it is perceived, localized, and interpreted (Figure 1).



This complex nociceptive system is balanced by an equally complex antinociceptive system (Figure 2). Pain signals arriving from peripheral tissues stimulate the release of endorphins in the periaqueductal gray matter of the brain and enkephalins in the nucleus raphe magnus of the brainstem. The endorphins inhibit propagation of the pain signal by binding to µ-opioid receptors on the presynaptic terminals of nociceptors and the postsynaptic surfaces of dorsal horn neurons. The enkephalins bind to delta-opioid receptors on inhibitory interneurons in the substantia gelatinosa of the dorsal horn, causing release of gamma-aminobutyric acid (GABA) and other chemicals that dampen pain signals in the spinal cord.


Spinal interneurons release dynorphin, which activates kappa-opioid receptors and leads to closure of N-type calcium channels in the spinal cord cells that normally relay the pain signal to the brain. Following the release of enkephalins, spinal cord cells release other small molecules, including norepinephrine, oxytocin, and relaxin, that also inhibit pain signal transmission.
Enkephalin is particularly notable in that it binds to delta-opioid receptors that are selectively exposed on nociceptive nerves when they are actively transmitting a pain signal. These receptors are usually localized on presynaptic vesicles containing neurotransmitters. After the neurotransmitters are released, the receptors are incorporated into the presynaptic cell membrane. Active nociceptors thus become more sensitive than inactive nociceptors to both endogenous and exogenous opiates, which may explain how certain opioid analgesics relieve ongoing pain without impairing the ability to sense the pain caused by new injuries.

This natural pain-relieving system may be as important to normal functioning as the pain-signaling system. Because of it, minor injuries such as a cut finger or stubbed toe make us upset and dysfunctional for only a few minutes--not for days, as might be the case if the pain persisted until the injury completely healed. We are thus able to cope with life's daily pains without constantly suffering. But just as disorders of the pain-sensing system can give rise to illness and dysfunction, so can disorders of the pain-relieving system. Fibromyalgia, a condition that many clinicians consider to be factitious, may be one example of a debilitating disease caused by antinociceptive dysfunction.


Chronic Pain Pathways
Chronic pain is not just a prolonged version of acute pain. As pain signals are repeatedly generated, neural pathways undergo physiochemical changes that make them hypersensitive to the pain signals and resistant to antinociceptive input. In a very real sense, the signals can become embedded in the spinal cord, like a painful memory. The analogy to memory is especially fitting since the generation of hypersensitivity in the spinal cord and memory in the brain may share common chemical pathways.

Activation of NMDA Receptors. The main neurotransmitter used by nociceptors synapsing with the dorsal horn of the spinal cord is glutamate, a versatile molecule that can bind to several different classes of receptors. Those most involved in the sensation of acute pain, AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic-acid) receptors, are always exposed on afferent nerve terminals. In contrast, those most involved in the sensation of chronic pain, NMDA (N-methyl-D-aspartate) receptors, are not functional unless there has been a persistent or large-scale release of glutamate. Repeated activation of AMPA receptors dislodges magnesium ions that act like stoppers in transmembrane sodium and calcium channels of the NMDA receptor complex. The conformational change in the neuronal membrane that makes these receptors susceptible to stimulation is the first step in central hypersensitization (Figure 3) and marks the transition from acute to chronic pain.



Activation of NMDA receptors has a number of important consequences (Table 1). Because activation causes spinal neurons carrying pain to be stimulated with less peripheral input (a phenomenon known as windup), less glutamate is required to transmit the pain signal, and more antinociceptive input is required to stop it. Endorphins and other naturally occurring pain-relievers cannot keep up with the demand and essentially lose their effectiveness. So do opioid medications at the usually prescribed dosage. The clinical implications are clear but underappreciated--inadequately treated pain is a much more important cause of opioid tolerance than use of opioids themselves.


Table 1. Results of NMDA-Receptor Activation
Normal
Windup

Reduced opioid effects

Neuropathic

Injury discharge

Hyperalgesia

Allodynia

Reduced opioid effects

Inflammatory

Neuronal responses

Hyperalgesia

Reduced opioid effects (time-dependent)

Long-Term

Gene induction

Novel neurotransmission

Cell death

Pain memory

Reduced opioid effects

Adapted from Dickerson, 1994



Activation of NMDA receptors can also cause neural cells to sprout new connective endings. This neural remodeling can add new dimensions to old sensations. The emotional component of pain may be increased, for example, if the new connections channel more of the pain signal to the reticular activating system of the brain. When that occurs, the signal's pathway into the cerebral cortex is more splayed and the pain signal more diffuse and difficult to localize.

Neural remodeling may also precipitate the destruction and loss of cells. Some of the brain damage that occurs during strokes is believed to be caused by the torrents of glutamate released from injured presynaptic cells, which overstimulate NMDA receptors on adjacent postsynaptic cells and effectively burn them out. The same phenomenon may occur in parts of the spinal cord receiving persistent pain signals. There is also evidence that NMDA receptor activation can stimulate normal apoptotic mechanisms. Although some of the details have yet to be elucidated, the data obtained thus far suggest that chronic pain is a destructive process that requires timely treatment in order to limit the damage that it causes.

Activation of NK-I Receptors. A further effect of NMDA-receptor activation is that it causes nociceptors to release the peptide neurotransmitter substance P, which binds to neurokinin-1 (NK-1) receptors in the spinal cord. Activation of these particular receptors amplifies the pain signal and also stimulates nerve growth and regeneration. It is thus interesting to note that the one chemical abnormality repeatedly documented in controlled studies of patients with fibromyalgia syndrome is an elevated level of substance P in the spinal fluid.

In animal models of chronic pain, substance P binding to NK-1 receptors induces production of the c-fos oncogene protein, which in many respects can be regarded as a biochemical footprint of chronic pain. The presence of c-fos protein in spinal cord cells is a marker for central hypersensitization. At first, it is detectable in afferent spinal cord cells actively receiving pain signals. With persistence of the pain, the protein spreads to progressively higher levels of the spinal cord until it eventually reaches the thalamus, at which point the pain is virtually untreatable.

This model explains why patients who have had uncontrolled pain for months or years often find that their pain has spread beyond the originally affected organ or dermatome. In these cases, physicians who are not familiar with the concept of neural plasticity are apt to conclude that the pain is psychogenic, because it does not conform to their preconceived map of the nervous system.

continued

 
Old 10-20-2004, 01:53 PM   #4
Senior Veteran
(male)
 
Join Date: Jun 2003
Posts: 3,488
Shoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB User
Re: Shoreline, tolerance question

Afferent Becomes Efferent. Although most of us were taught that neuronal cells transmit signals in only one direction, either towards (afferent) or away (efferent) from the brain, we now know that many neurons can carry signals in both directions. With the prolonged generation of pain signals, a dorsal root reflex can become established. This is a pathologic condition in which afferent cells in the dorsal horn release mediators that cause action potentials to fire antidromically (i.e., backwards down the nociceptors). When this happens, packets of chemicals located at the peripheral terminals of these cells are released. Among these chemicals are nerve growth factor and substance P, which is not only a neurotransmitter but also a potent inflammatory agent. Nerve growth factor increases the excitability of nociceptors. Pain signals from peripheral nerves are thus heightened, and the cycle of chronic pain is continued (Figure 4).



Neurogenic Inflammation. The release of substance P and nerve growth factor into the periphery causes a tissue reaction termed neurogenic inflammation. In contrast to the classic inflammatory response to tissue trauma or immune-mediated cell damage, neurogenic inflammation is driven by events in the central nervous system and does not depend on granulocytes or lymphocytes. Substance P causes degranulation of mast cells, and its effects on the vascular endothelium induce the release of bradykinin and production of nitric oxide, a potent vasodilator. Biopsy specimens from neurogenically inflamed tissues--e.g., tendon insertion sites in fibromyalgia, the synovium in certain forms of chronic arthritis, the bladder in interstitial cystitis, or the colon in severe irritable bowel syndrome--typically show vasodilatation, plasma extravasation, abnormal sprouting of peripheral nerve terminals, and an accumulation of mast cells.

Hyperalgesia and Allodynia. Chemosensitive afferent nerves may become so sensitized by persistent pain that a low-intensity stimulus will provoke hyperalgesia. In certain syndromes, the pain signals may also activate the usually quiet mechanosensitive afferent nerves that are present in synovial tissue and all viscus organs. Once activated, even slight movement or minimal deformity of surrounding tissues can generate pain. This phenomenon, allodynia, is common in chronic degenerative arthritis, low back pain, and severe irritable bowel syndrome and interstitial cystitis.


Neuropathic Pain
Damage to sensory nerves can cause neuropathic pain syndromes that are relatively insensitive to antinociceptive suppression. In patients who have had a stroke or spinal cord injury, for example, the nerves that carry touch signals may be destroyed. If enough pain-carrying fibers regenerate, tissues presumed to be anesthetic can produce considerable pain if reinjured or inflamed. This deafferentation pain is most common among patients with spinal cord injuries. Although they may have no normal sensation below the waist, surgery on decubitus ulcers or even a simple bladder infection can be extremely painful. In postthoracotomy and other postoperative pain syndromes, this type of pain is often associated with tactile hypesthesia.

Under certain conditions, usually after a tissue injury, the large myelinated nerves (A fibers) that normally carry the sense of touch, sprout new terminal branches that synapse with pain-sensing cells in the superficial layers of the dorsal horn rather than with touch-sensing cells located deeper in the spinal cord. Not only can these A fibers mediate allodynia, but they are also resistant to the inhibiting effects of endorphins or opioid medications because they do not have opioid receptors. That would explain why patients with reflex sympathetic dystrophy have such agonizing pain and do not respond to opioid medications.

Damage to the nociceptors themselves can also give rise to opioid-resistant pain. When these nerve fibers are traumatized or severed, opioid receptor proteins manufactured within the nerve cell body cannot be transported down the axon to their final destination in the presynaptic membrane. That is why surgical procedures designed to destroy or cut pain nerves are generally unsuccessful in providing long-term pain relief. Neurodestructive procedures, such as presacral neurectomies for pelvic pain, occipital neurectomies for chronic headaches, and limb amputation for reflex sympathetic dystrophy, that used to be common, have fallen out of favor. Partial spinal cord transections and other neuroablative procedures continue to be performed but are reserved primarily for end-stage cancer patients with intractable pain and very grim prognoses.


Translating Science into Treatment
The generation of pain signals and consequent neural remodeling and neurogenic inflammation may be slowed or stopped by activating normal antinociceptive pathways at several points. Stimulation of opioid receptors on peripheral nociceptors or postsynaptic neurons in the dorsal horn inhibits the release of glutamate and prevents the transmission of pain signals. This is the basic mode of action of opioid medications.

Drugs that block NMDA receptors can also have important pain-relieving effects. In caring for patients who have illicitly used the potent NMDA receptor-blocker phencyclidine ("angel dust"), I have been repeatedly impressed by how many of them can tolerate the extreme pain of gunshot wounds or fractures. Unfortunately, phencyclidine's psychotomimetic effects make its use as a pain reliever impractical.

With careful use, other NMDA receptor-blockers such as ketamine can undo at least some of the damage done by chronic pain. It is interesting to note that, while nearly all of the powerful pain-relieving opioids are levorotatory, their dextrorotatory isomers are often noncompetitive NMDA receptor-bockers. One example is dextromethorphan, the D-isomer of levorphanol. Another is methadone, which is formulated as a racemic mixture that can both activate opioid receptors and block NMDA receptors. In patients who have become tolerant to opioids, these drugs can often restore sensitivity, even to small doses. Unfortunately, clinical use of these drugs, with the exception of methadone, is currently limited because they not only block NMDA receptors in the spinal cord but also in the brain, where they can reverse learned inhibitions and induce transient psychosis. Current research should soon yield ways of formulating and delivering NMDA receptor-blockers that will ease most chronic pain syndromes without causing such adverse effects.

The finding that enkephalins work by closing N-type calcium channels, which are found only in neural tissue, prompted a search for drugs that would block these channels specifically. One of the compounds isolated, ziconotide, derived from the venom of a fish-hunting sea snail, has shown promising results in clinical studies of patients with intractable opioid-resistant pain.

Gabapentin, an anticonvulsant widely used for treatment of neuropathic pain, also inhibits calcium flux through N-type channels. Despite its name, gabapentin does not appear to have any effect on GABA receptors. However, GABA-agonist medications such as baclofen are among the drugs being investigated for GABA-like pain-relieving effects.

As new findings about the various elements of the antinociceptive system have emerged, a number of other drugs are being reevaluated for analgesic potential. The observation that alpha2-adrenergic receptors are involved in inhibiting pain signals, led to reformulation of the oral hypertensive agent clonidine as a potent intrathecal pain reliever. The demonstration of clonidine's benefits in treating chronic pain syndromes has focused attention on other alpha-adrenergic drugs. Both tizanidine, an antispasmodic agent, and oxymetazoline, a nasal decongestant, are currently being assessed for their utility as pain relievers.


Clinical Lessons
In tracing the pathways of acute and chronic pain, we see that they are very different processes--so different that some investigators have proposed that they be referred to by separate names, eudynia and maledynia. Chronic pain (or maledynia), unlike normal everyday pain, is a destructive disease with physical, psychological, and behavioral consequences.

Unlike patients with acute pain, those with chronic pain often appear to be depressed, or even vegetative, and many show signs of psychomotor impairment. Another characteristic of these patients is that, in the course of giving their histories, they frequently refer to events and losses that appear to be only peripherally related to the focus of their evaluation. Although this is usually interpreted as evidence of a characterologic disorder or psychiatric illness, it could be a manifestation of the neurochemical link between pain and memory.

The failure to realize that behavioral and psychologic changes can reflect pathologic changes in the nervous system often prevents patients with chronic pain from getting the timely and aggressive care that they need. The clinical take-home lesson is that we can reverse the signs and symptoms of chronic pain with proper treatment. Part two of this article will make the case that opioid medications, although broadly feared and highly restricted, can be the mainstay of safe, effective treatment for chronic pain disease.

 
Old 10-22-2004, 06:05 AM   #5
Senior Veteran
(female)
 
Join Date: Jan 2003
Location: alberta
Posts: 1,148
twisten HB User
Re: Shoreline, tolerance question

Thanks so much for the reply Dave. I guess it wasn't a "quick question" after all heh?? I definitely see that going off opiates altogether because of tolerance issues is maybe not the answer. I didn't think things would be so complex. I think I might have to go back to school to understand some of it though LOL!! No more questions yet but I'm still trying to absorb it all!!
__________________
Crohn's disease, scoliosis, chronic myofascial pain, migraines, Osteoporosis, Trigeminal Neuralgia.

 
Old 10-22-2004, 10:08 AM   #6
Senior Veteran
(male)
 
Join Date: Jun 2003
Posts: 3,488
Shoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB UserShoreline HB User
Re: Shoreline, tolerance question

Hey twist, sorry i didn''tmean to floood you with technical information, The basics are underestanding that Acute pain is not he same as chronic pain, different parts of thebrain are involved with acute pain verses chronic pain.

I had alsays thought pain was just pain, why distinguish between chronic and acute when the treatment with opiate pain meds produces the same results, anelgesia. It's the changes that occur over time, the different part of the brain involved and the different neurotransmitters that send the signal that change.

With acute pain the model says a pain signal is sent from the source to a part of the brain interpreteed and then sent to a different part of the brain that creates the pain response. The pain signals travel in one direction , from the effected area to the one part of the brain , then sent to another part and interpreted as pain creating your pain response.

Another big difference is the ability to feel more than one type of pain. An opate naive patient that say, has a tooth extracted a day or two before major surgery will feel the pain from the dental procedure up untill surgery, But once recovering from invasive surgery, the tooth pain disapears and the brain focuses on the new and and more intense signals from neurtransmitters and the patient will no longer complain about the tooth pain but the post op pain. It's not that the opiates are just manageing all pain, It's that the brain at this stage of new acute pain, can only interpret one pain sensation at a time, so the tooth problem falls by the way side.

If someone had both Knee and ankle surgery, they would basically complain of pain from the knee down, they wouldn't distinguish the knee pain from the ankle pain. Where chonicpain patinets can distingyuish, nerve pain from mechanical pain and spreading pain or referred pain.

With chronic pain, a different part of the brain becomes involveed, The transmission of signals not only travels in one direction to the brain but signals start being sent back down the different fibers causing nerve regeneration and more pain. A CP patinet pain may spread to one or more affected areas. With a complete shift in interpretation and transmision of pain signals we can now interpret diffeerent pain from different sources.

The release of substance P doesn't ocur with acute pain, the neuro tranmitter NK1 isn't acttivated and sevral other changes occur. Substance P is a powerful neru inflamatory agent that adds a whole new complexity to treating chronic pain.

For example I have the everyday pain I deal with, I have additional pain when hardwrae shifts which causes pain in the sacurn where screws are toggling. It just so happened I fell in the shower today steping out of the tub, I ate it big time and now have pain all over from twisting my back and brusing my shoulder where it hit the sink.

This isn't something that would happen during the acute pain of post surgery, If you fell out of bed the day after sugery you would simply have more surgical pain rather than pain signals being interpreted through one channel and feeling the wrist pain you cought yourself with or the sholder you landed on. You main concern wouldn't be other damage to your body but possible damage to the surgical area that is serving as a warnign that something maybe wrong.

A great example is when my wife gave birth to our doaughter, she broke her ankle in the process, If you can imagine pulling the legs back and all that brirth stuff ocuring, We all heard the pop from her ankle but she had an epideural and no compalian tof her ankle once the baby was delivered. She had more sever pain from child birth. It wasn't until the next day when the delivery pain wound down and she put weight on her ankle did she even become aware of the problem.

The more you read that article the more it starts to make sense. There are pictures and dagrams of the pain signals that show how acute pain responds differently than chronic pain that I can't cut and paste onto the forum. So going directly to the article and looking at the diffeent dagrams of acute pain response and chronic pain response. It's a completely different mode of tranmission with destructive effects, seeing the different chemicals the different parts of the brain involved make it easier to understand. I always do better with a pictures too. LOL

You really don't need to understand every word but understanding chronic pain is different than acute pain that easily resets your nervous system after an acute injury is very different from how chronic pain is transmittted and interpreted and the different chemicals that actually spread the pain signal by causing cell changes and then cell death, new nerve generation, redirecting pain signals, releasing damaging peptides and neourtransmitters. Substance P is not released with acute pain but but is with chronic and substance P a powerful neuro inflamatory agent which actually increase your pain repsonse.

I always thought pain is pain, why is CP treated with different meds but there is an understandable reaon why you wouldn't imediate throgh nemanda, anti seizure meds,ketamine or dex into a mix of post op pain meds. It's not needed for acute pain control, where it's crucial for chronic pain control.

Read it several times and each time you will be able to seperate the important points of the article from the simple biochemical bable of technical artcicles.

You don't need additional school, perhaps just acepting CP is differnt from acute pain and then seeing the difference between the two makes the article easier to understand.
Take care, Dave

Last edited by Shoreline; 10-22-2004 at 10:25 AM.

 
Old 10-22-2004, 05:40 PM   #7
Senior Veteran
(female)
 
Join Date: Jan 2003
Location: alberta
Posts: 1,148
twisten HB User
Re: Shoreline, tolerance question

Dave, I was just teasing you about needing extra schooling but thanks I do understand better now, especially the difference between chronic and acute pain. I haven't had a chance to thoroughly read the site you directed me to. Had a doc appt yesterday and found out I now have osteopenia so I was reading up on that last night. Tonight I will spend more time reading the site you directed me to. I hope you didn't do more damage to your back when you fell. Oh by the way, have I told you lately how much I appreciate your help and advice? You are such a great person for all the advice you give us on here.

Marcy
__________________
Crohn's disease, scoliosis, chronic myofascial pain, migraines, Osteoporosis, Trigeminal Neuralgia.

 
Closed Thread

Similar Threads
Thread Thread Starter Board Replies Last Post
Dave (Shoreline), question for you friendly_one Pain Management 2 04-06-2006 03:26 PM
shoreline,about tolerance[anyone welcome feedback] madhatter Pain Management 4 08-31-2005 09:45 AM
Bad batch of Meds? Shoreline... NaeNae Pain Management 1 01-28-2005 12:30 PM
shoreline no patience Pain Management 2 09-19-2004 12:41 PM
Shoreline ? khoff Pain Management 5 07-05-2004 11:56 AM




Thread Tools

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is Off
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off




Sign Up Today!

Ask our community of thousands of members your health questions, and learn from others experiences. Join the conversation!

I want my free account

All times are GMT -7. The time now is 04:00 PM.



Site owned and operated by HealthBoards.com™
Terms of Use © 1998-2014 HealthBoards.com™ All rights reserved.
Do not copy or redistribute in any form!